18

Definition. (less than & greater than for line seg-
ments) In a metric geometry, the line segment AB
is less than (or smaller than) the line segment CD
(written AB < CD) if AB < CD. AB is greater
than (or larger than) CD if AB>CD. The he symbol
AB < CD means that either AB < CD or AB = CD.

Definition. (less than & greater than for angles)
In a protractor geometry, the angle LABC is less
than (or smaller than) the angle £DEF (written
£ABC < £DEF) if m({LABC) < m({DEF). £ABC
is greater than (or larger than) £ DEF if {DEF <
£ABC). The symbol £ABC < £DEF) means that
either LABC < £DEF) or LABC = £DEF).

Theorem. In a metric geometry,_@ < CD if and
only if there is a point G € int(CD) with
AB = CG.

1. Prove the above Theorem.

Theorem. In a protractor geometry,
£ABC < £DEF) if and only if there is a point
G € int(LDEF) with LABC = {DEQG).

2. Prove the above Theorem.

Definition. (exterior angle, remote interior an-
gle) Given AABC in a protractor geometry, if
A—C-D then £BCD is an exterior angle of AABC.
£A and £B are the remote interior angles of the
exterior angle < BCD.

Theorem (Exterior Angle Theorem). In a
neutral geometry, any exterior angle of AABC is
greater than either of its remote interior angles.

3. Prove the above Theorem. [Th 6.3.3, p. 136]

4. Ina protractor geometry prove the two
exterior angles of AABC at the vertex C are
congruent.

5. In a neutral geometry prove that the base
angles of an isosceles triangle are acute.

6. Show that at most one angle in triangle can
be right or obtuse angle, and that at least two
angles are acute.

Corollary In a neutral geometry, there is
exactly one line through a given point P
perpendicular to a given line €.

7. Prove the above Corollary. [Cor 6.3.4, p. 137]

The Exterior Angle Theorem and Its Consequences

Theorem (Side-Angle-Angle, SAA). In a
neutral geometry, given two triangles AABC and
ADEF, if AB=DE, A= «£D, and £C = «F,
then AABC = ADEP.

8. Prove the above Theorem. [Th 6.3.5, p 138]

We should note that the above proof (which is
valid in any neutral geometry) is probably different
from any you have seen before. In particular we did
not prove 4B = £E by looking at the sums of the
measures of the angles of the two triangles. We
could not do this because we do not know any
theorems about the sum of the measures of the
angles of a triangle. In particular the sum may not
be the same for two triangles in an arbitrary
neutral geometry.

Theorem In a neutral geometry, if two sides of a
triangle are not congruent, neither are the
opposite angles. Furthermore, the larger angle is
opposite the longer side.

9. Prove the above Theorem. [Th 6.3.6, p 138]

Theorem In a neutral geometry, if two angles of
a triangle are not congruent, neither are the
opposite sides. Furthermore, the longer side is
opposite the larger angle.

10. Prove the above Theorem.

Theorem (Triangle Inequality). In a neutral
geometry the length of one side of a triangle is
strictly less than the sum of the lengths of the
other two sides.

11. Prove the above Theorem. [Th 6.3.8, p 139]

12. In a neutral geometry, if D € int(AABC)
prove that AD + DC < AB+ BC and
£LADC > LABC.

Theorem (Open Mouth Theorem). In a neutral
geometry, given two triangles AABC and ADEF
with AB = DE and BC = EF, if £B > £E then
AC > DF.

13. Prove the above Theorem. [Th 6.3.9, p 140]

Theorem In a neutral geometry, a line segment
joining a vertex of a triangle to a point on the
opposite side is shorter than the longer of the
remaining two sides. More precisely, given
AABC with AB< CB, if A—D —C then

DB < CB.
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14. Prove the above Theorem.

15. Prove the converse of Open Mouth
Theorem: In a neutral geometry, given AABC
and ADEF, if AB=DE, BC = EF and AC > DF,
then 4B > £E.

16. In a neutral geometry, given AABC such

19 Right Triangles

A word of caution is needed here. The first thing
that many of us think about when we hear the
phrase "right triangle” is the classical Pythagorean
Theorem. This theorem is very much a Euclidean
theorem. That is, it is true in the Euclidean Plane
but not in all neutral geometries (see Problem 10).

that the internal bisectors of LA and £C are
congruent, prove that AABC is isosceles.

17. Replace the word "neutral” in the
hypothesis of Theorem 6.3.6 (Problem 9) with

the word "protractor”. Is the conclusion still
valid?

Theorem For any line ¢ in a neutral geometry
and P¢{¢ d(P,{)<d(P,R) forall Rel.
Furthermore, d(P,¢) = d(P,R) if and only if

PRLC.
Definition. (altitude, foot of the altitude) If ¢ is

—>
Thus in each proof of this section which deals with a the unique perpendicular to AB through the

general neutral geometry we must avoid the use of
the Pythagorean Theorem.

Definition. (right triangle, hypotenuse) If an an-
gle of AABC is a right angle, then AABC is a right
triangle. A side opposite a right angle in a right
triangle is called a hypotenuse.

Definition. (the longest side, a longest side) AB is
the longest side of AABC if AB > AC and AB > BC.
AB is a longest side of AABC if AB > AC and

AB > BC.

vertex C of AABC and if £NAB = {D}, then CD
is the altitude from C. D is the foot of the
altitude (or of the perpendicular) from C.

Theorem In a neutral geometry, if ABis a
longest side of AABC and if D is the foot of the
altitude from C, then A—D — B.

3. Prove the above Theorem. [Th 6.4.3, p 145]

Theorem (Hypotenuse-Leg, HL). In a neutral
geometry if AABC and ADEF are right triangles
with right angles at C and F, and if AB=DE

Theorem In a neutral geometry, there is only one and AC = DF, then AABC = ADEF.

right angle and one hypotenuse for each right
triangle. The remaining angles are acute, and
the hypotenuse is the longest side of the triangle.

1. Prove the above Theorem. [Th 6.4.1, p 143]

Definition. (legs) If AABC is a right triangle with
right angle at C then the legs of AABC are AC
and BC.

Theorem (Perpendicular Distance Theorem).
In a neutral geometry, if € is a line, Q € ¢, and

P ¢ ¢ then (i) ifl(’—Q)J_ﬁthen PQ < PR for all
Re ¢ (ii) if PQ < PR for all Re ¢ then PQ 1 £.

2. Prove the above Theorem. [Th 6.4.2, p 144]

Definition. (distance from P to {) Let € be a
line and P a point in a neutral geometry. If
P& {, let Q be the unique point of € such that

>
PQ 1 €. The distance from P to ¢ is

[ d(P,Q), ifPel
d(”)‘{ 0, ifPel.

4. Prove the above Theorem. [Th 6.4.4, p 146]

Theorem (Hypotenuse-Angle, HA). In a neutral
geometry, let AABC and ADEF be right
triangles with right angles at C and F. If
AB=DE and £A = £D, then AABC = ADEF.

Definition. (perpendicular bisector) The
perpendicular bisector of the segment AB in a
neutral geometry is the (unique) line € through
the midpoint M of AB and which is
perpendicular to AB.

Theorem In a neutral geometry the L
perpendicular bisector € of the segment AB is
the set B={PeS | AP = BP}.

5. Prove the above Theorem. [Th 6.4.6, p 147]

6. In a neutral geometry, if D is the foot of the
altitude of AABC from C and A—-B—-D, then
prove CA > CB.

7. In a neutral geometry, denote by M; the
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foot of the altitude of AABM {rom M_and let
A — M, - B. Prove that then MA > MB if and
only lf MlA > MlB

8. If M is the midpoint of BC then AM is
called a median of AABC. Consider AABC such
that AB< AC. Let E, D and H denote the
points in which bisector of angle, median and

altitude from A intersect line I(S_C) , respectively.
Show that (a) LAEB < LAEC; (b) BE < CE; (c)
we have H —E - D.

9. (a.) Prove that in a neutral geometry if
AABC is isosceles with base BC then the
following are collinear: (i) the median from A;
(ii) the bisector of £LA; (iii) the altitude from A;
(iv) the perpendicular bisector of BC. (b.)

Conversely, in a neutral geometry prove that if
any two of (i)-(iv) are collinear then the triangle
is isosceles (six different cases).

10. Show that the conclusion of the
Pythagorean Theorem is not valid in the
Poincaré Plane by considering AABC with
A(2,1), B(0,V5), and C(0,1). Thus the
Pythagorean Theorem does not hold in every
neutral geometry.

Theorem In a neutral geometry, if ﬁ is the
bisector of LABC and if E ancl_l-; are t(lﬁ)feet of
the perpendiculars from D to BA and BC then
DE = DF.

11. Prove the above Theorem. [Th 6.4.7, p 148]

20 Circles and Their Tangent Lines

Definition. (circle with center C and radius r,
chord, diameter, radius segment). If C is a point
in a metric geometry (S, £, d) and if r > 0, then

C=C,(C)={PeS|PC=r)

is a circle with center C and radius r. If A and B
are distinct points of C then AB is a chord of C. If
the center C is a point on the chord AB, then AB
is a diameter of C. For any Q € C, CQ is called a
radius segment of C.

1. Find and sketch the circle of radius 1 with
center (0,0) in the Euclidean Plane and in the
Taxicab Plane. [Ex 6.5.1, p150]

2. Consider {R?, £} with the max distance d,
(recall ds(P, Q) = max{|x; — x|, |y; — v»|} where
P(x1,v1) and Q(x,,9,) denote two points in R?).
Sketch the circle C;((0,0)).

3. Show that A ={(x,y) € H|x? + (y - 5)% = 16}

4. Prove the above Theorem. [Th 6.5.3, p152]

Corollary. For any circle in a neutral geometry,
the perpendicular bisector of any chord contains
the center.

5. If AB is a chord of a circle in a neutral
geometry but is not a diameter, prove that the
line through the midpoint of AB and the center
of the circle is perpendicular to AB.

6. Prove that a line in a neutral geometry
intersects a circle at most twice.

Definition. (interior, exterior). Let C be the cir-
cle with center C and radius r. The interior of C
is the set int(C) = {P € S|CP < r}. The exterior of
C is the set ext(C) ={P € S|CP > r}.

Theorem. If C is a circle in a neutral geometry
then int(C) is convex.

7. Prove the above Theorem. [Th 6.5.5, p153]

is the Poincaré circle C with center (0,3) and Definition. (tangent, point of tangency). In a
radius In 3. [Ex 6.5.2, p151] |— . — . . :
metric geometry, a line € is a tangent to the cir-
Our first result tells us that in a neutral cle C if £NC contains exactly one point (which is
geometry the center and radius of a circle are called the point of tangency). ¢ is called a secant
determined by any three points on the circle. of the circle C if £NC has exactly two points.

Theorem. In a neutral geometry, let C; =C,(C) 8. In the Taxicab Plane prove that for the

and C, = C4(D). If C; NC, contains at least three
points, then C = D and r =s. Thus, three points
of a circle in a neutral geometry uniquely
determine that circle.

circle C =C1((0,0)): (a). There are exactly four
points at which a tangent to C exists. (b). At
each point in part (a) there are infinitely many
tangent lines.
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